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Abstract

The nonlinear random interaction of an elastic structure with liquid sloshing dynamics in a cylindrical
tank is investigated in the neighborhood of 2:1 internal resonance. Such internal resonance takes place
when the natural frequency of the elastic structure is close to twice the natural frequency of the anti-
symmetric sloshing mode (1,1). The excitation is generated from the response of a linear shaping filter
subjected to a Gaussian white noise. The analytical model involves three sloshing modes (1,1), (0,1) and
(2,1). The system response statistics and stability boundaries are numerically estimated using Monte Carlo
simulation. The influence of the excitation center frequency, its bandwidth, and the liquid level on the
system responses is studied. It is found that there is an irregular energy exchange between the structure and
the liquid free surface motion when the center frequency is close to the structure natural frequency.
Depending on the excitation power spectral density, the liquid free surface experiences zero motion,
uncertain motion (intermittency), partially developed motion, and fully developed random motion. The
structure response probability density function is almost Gaussian, while the liquid elevation deviates from
normality. The unstable region, where the liquid motion occurs, becomes wider as the excitation intensity
increases or as the bandwidth decreases. As the liquid depth or the structure spring stiffness decreases, the
region of nonlinear interaction shrinks and is associated with a shift of the peak of the structure mean
square response toward the left side of the frequency axis.
r 2004 Elsevier Ltd. All rights reserved.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

c damping coefficient of structure
Fl vertical fluid force
F ðtÞ narrow-band random excitation
g acceleration of gravity
h liquid depth
k structure stiffness
M total mass of structure and liquid ð¼

m þ mlÞ

m mass of structure
ml mass of liquid
P fluid hydrodynamic pressure
R tank radius
ðr; y; zÞ circular cylindrical coordinate sys-

tem (see Fig. 1)
S0 power spectrum density of white

noise
t time

W ðtÞ Gaussian white noise
ðx; y; zÞ rectangular coordinate system (see

Fig. 1)
Z0 displacement of structure
b angular position of nodal diameter
g bandwidth of a narrow-band ran-

dom excitation
zmn damping ratios of ðm; nÞ sloshing

mode
Z displacement of liquid surface
m1 ¼ m=M

m2 ¼ mlR=ðpMhÞ

r fluid density
F velocity potential function
O center frequency of a narrow-band

random excitation
os structure natural frequency
omn natural frequency of the ðm; nÞ slosh-

ing mode
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1. Introduction

The problem of liquid sloshing interaction with structural dynamics may fall into one of the
following categories:
1.
 Interaction of liquid sloshing dynamics with the container elastic modes. Two limiting cases
may occur where interaction disappears [1]. The first case deals with the excitation of liquid
surface modes where significant elastic modes of the container are not participating. In this
case, the analysis of the liquid in a rigid container will provide a satisfactory description of the
overall behavior. The second case deals with the excitation of the container elastic modes where
significant liquid motion does not occur. In this case, the presence of the liquid will contribute
to the distributed mass to the tank walls, and the analysis can be carried out without
considering any interaction with the liquid sloshing dynamics. Between these two limiting cases,
one should consider the nonlinear interaction between liquid sloshing and structure mode in
breathing and bending deformations.
2.
 Interaction of liquid sloshing dynamics with the supporting elastic structure. This type of
interaction takes place between the free liquid surface motion and the supported elastic
structure dynamics based on the assumption that the liquid container is rigid.
3.
 Liquid interaction with immersed elastic structures [2,3].

The first two categories have recently been reviewed by Ibrahim et al. [4]. The present work is
related to the second category. Under base motion of liquid water towers, the fluid container
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experiences motion in a certain trajectory governed by the excitation and the liquid response. The
free liquid surface motion results in hydrodynamic forces that are fed back to the supporting
structure. The dynamics of elevated water towers under seismic excitation was examined by Ifrim
and Bratu [5], Sonobe and Nishikawa [6], van Erp [7], and Shepherd [8]. The nonlinear interaction
in elevated water towers subjected to vertical sinusoidal ground motion was examined in the
neighborhood of internal resonance by Ibrahim and Barr [9,10], Ibrahim [11], and Ibrahim and Li
[12]. In these studies, the free liquid surface sloshing modes and the elastic support structure were
coupled through inertia nonlinearity, which results in internal resonance conditions among the
interacting modes (i.e.,

Pn
j¼1 kjoj ¼ 0; where kj are integers and oj are the natural frequencies of

the coupled modes). This type of coupling is referred to as autoparametric interaction, and occurs
when an externally excited mode can act as a parametric excitation to other modes. The problem
of internal resonances in nonlinearly coupled oscillators is of interest in connection with
redistribution of energy among the various natural modes. This energy sharing is usually brought
about by resonant interactions among the natural modes of the system. The coupling among these
modes plays a crucial role in such interactions. In a straightforward perturbation theory, internal
resonances lead to the problem of small divisors (secular terms).
Under the principal internal resonance condition (i.e., when one of the normal mode

frequencies is twice another mode frequency), the system possesses a steady-state response [9].
Ibrahim and Barr [10] found that under the summed or difference internal resonance conditions
(i.e., one of the normal mode frequencies equals the sum or difference of another two mode
frequencies) the system does not achieve a constant steady-state response.
Nonstationary responses of cases including violent system motion, which can lead to collapse of

the system, were reported in the neighborhood of multiple internal resonances [11]. The multiple
internal resonances may occur when two or more sloshing modes are interacting with the vertical
and horizontal motions of the structure. In the neighborhood of the summed internal resonance
and one-to-one internal resonance, the structure and free liquid surface simultaneously oscillate
with a continuous increase in their amplitude. This growth could lead to structural failure if the
shaker excitation is not stopped. In the presence of one-to-two and one-to-one internal resonance
conditions, experimental observations showed a steady-state response over a frequency range
defined by the regions of instability. The regions of instability were indicated by the occurrence of
collapse in response amplitudes. Another type of instability, manifested by a jump in amplitudes,
was caused by a weak energy flow between the fluid modes and structure modes for a few cycles.
Within a short period of time, the system achieves a steady-state response.
Ibrahim and Li [12] studied liquid–structure interaction under horizontal periodic motion.

Ikeda and Nakagawa [13] and Ikeda et al. [14] considered the nonlinear interaction of liquid
sloshing in rectangular and cylindrical tanks with an elastic structure whose motion is orthogonal
to the tank vertical walls. They showed that the frequency response curves experience change from
soft to hard response characteristics as the water depth decreases. Under vertical sinusoidal
excitation of an elastic structure carrying a rigid rectangular tank, Ikeda [15] and Ikeda and
Murakami [16,17] determined the response of the coupled system when the structure natural
frequency is about twice the liquid sloshing frequency. As the excitation frequency approached the
structure natural frequency the free liquid surface was excited through the autoparametric
resonance and energy was transferred from the structure to the free liquid surface. An asymptotic
expansion of the wave height and velocity potential of the liquid coupled with structural dynamics
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was developed by Limarchenko and Yasinsky [18] and Lukovskii and Timokha [19] for simplified
models of spacecraft.
In the absence of internal resonance, Haroun and Elliathy [20,21] and Haroun et al. [22]

combined a finite element model of a tower with a mechanical model of an elevated vessel. They
included the hydrodynamic forces due to liquid sloshing and its interaction with the motion of the
supporting tower. They found that the fundamental mode of sloshing combined with the lateral
translation and the global rotation at the top of the supporting tower, yield maximum values for
the shearing force and overturning moment on the tower. The flexibility of the tank wall would
definitely increase these maximum forces, though such an effect can be neglected in small capacity
tanks. Kareem and Sun [23] studied the stochastic response of structures with liquid tanks in the
absence of internal resonance.
Soundararajan and Ibrahim [24] examined more realistic cases such as simultaneous random

horizontal and vertical ground excitations in the presence of a 1:3 internal resonance. They used a
Gaussian and non-Gaussian closure schemes to determine the system response statistics. They
found that both Gaussian and non-Gaussian solutions deviate appreciably from the linear
solution as the system approaches internal resonance but they converge when the system is
detuned away from the exact internal resonance. The autoparametric interaction was identified by
an irregular energy exchange between the two modes.
The concept of using sloshing hydrodynamic forces to control structure vibration has

been recognized long time ago. It is known that shallow liquid levels in a container
experience traveling sloshing waves. On the other hand, deeper liquid levels cause a
standing sloshing wave in the fundamental mode. For large wave amplitudes, there is a
critical depth, above which the liquid waves possess soft nonlinear spring characteristics
and below that level, the nonlinearity is of the hard type. Furthermore, standing waves
are associated with poor energy dissipation (see, e.g., Ref. [25]). The effectiveness of tuned
liquid dampers (TLD) has been studied analytically, numerically, and experimentally. Most
of the analytical studies did not follow the coupled differential equations of the liquid
interaction with the support main structure. In some few cases, the coupling was considered
numerically [26].
This paper deals with an elastic structure carrying a cylindrical tank partially filled with liquid

where the structure is vertically subjected to a narrow-band random excitation. The modal
equations are derived taking into account the liquid nonlinear inertia forces. Nonlinear coupling
between liquid modes and structure modes results in 2:1 internal resonance, i.e., when the natural
frequencies of the structure and the first anti-symmetric sloshing mode are commensurable. The
modal equations are numerically solved using Monte Carlo simulation, and the system response
statistics are estimated.
2. Theoretical analysis

2.1. Equations of motion

Fig. 1 shows a rigid circular cylindrical tank supported on an elastic structure represented by a
mass m, spring stiffness k, and dashpot with damping coefficient c. The liquid tank has a radius R,
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Fig. 1. The model for theoretical analysis.
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and is partially filled with liquid to a depth h. A moving rectangular coordinate frame ðx; y; zÞ and
a circular cylindrical coordinate ðr; y; zÞ; are fixed to the liquid undisturbed free surface. The xy-
plane coincides with the equilibrium position of the liquid surface. The vertical displacement of
the mass m, measured from its equilibrium position when the tank is partially filled is Z0: The
vertical displacement of the liquid surface is Zðr; y; tÞ measured from the undisturbed free surface.
In terms of the velocity potential function Fðr; y; z; tÞ; the liquid motion inside the tank is governed
by the continuity equation (Laplace’s equation)

q2F
qr2

þ
1

r

qF
qr

þ
1

r2
q2F

qy2
þ
q2F
qz2

¼ 0: (1)

The hydrodynamic pressure Pðr; y; z; tÞ is determined from Bernoulli’s equation [9,27] (also see
Appendix A)

qF
qt

þ
1

2

qF
qr

� �2
þ
1

r2
qF
qy

� �2
þ

qF
qz

� �2( )
þ gz þ

P

r
¼ � €Z0z; (2)

where r is the fluid density, g is the acceleration of gravity, and a dot denotes differentiation with
respect to time t.
The equation of motion of the structure subjected to vertical random excitation, F ðtÞ; is

m €Z0 þ c _Z0 þ kZ0 ¼ Fl þ FðtÞ þ mlg; (3)
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where Fl is the fluid hydrodynamic force acting in the z-direction on the bottom of the tank, and
ml is the liquid mass. The fluid force Fl is given by integrating the fluid pressure at the bottom of
the tank as follows:

Fl ¼ �

Z 2p

0

Z R

0

rPðr; y; z; tÞjz¼�h drdy; (4)

where Pðr; y; z; tÞ is determined from Eq. (2).
The random excitation F ðtÞ is assumed to be generated from the following linear shaping filter:

d2F

dt2
þ g0

dF

dt
þ O20F ¼ O0W ðtÞ; (5)

where g0 is the filter bandwidth, O0 is the filter center frequency, W ðtÞ is a zero-mean Gaussian
white noise possessing constant power spectral density D.
The following parameters are introduced:

z0 ¼ Z0=R; Z̄ ¼ Z=R; r̄ ¼ r=R; z̄ ¼ z=R; h̄ ¼ h=R; m1 ¼ m=M; m2 ¼ ml=ðpMh̄Þ;

f ¼ F=ðR2o11Þ; k̄ ¼ k=ðMo211Þ; z ¼ c=ðMo11Þ; f ¼ F=ðMRo211Þ; wðtÞ ¼ W ðtÞ=ðMRo311Þ;

f l ¼ Fl=ðMRo211Þ; p ¼ P=ðrR2o211Þ; t ¼ o11t; xmn ¼ lmnR; O ¼ O0=o11; g ¼ g0=o11;

M ¼ m þ ml ; o11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gl11 tanhðl11hÞ

p
; c11 ¼ x11 tanhðx11h=RÞ; ōs ¼

ffiffiffiffiffiffiffiffiffiffiffi
k=M

p
=o11; ð6Þ

where lmn is the nth positive root of the derivative of Bessel function d=drfJmðlrÞgjr¼R ¼ 0: The
subscript ðm; nÞ refers to m nodal lines and the nth-order to a nodal concentric circle. In terms of
the new parameters (6), Eqs. (1)–(3), and (5) are

q2f
qr̄2

þ
1

r̄

qf
qr̄

þ
1

r̄2
q2f

qy2
þ
q2f
qz̄2

¼ 0; (7)

qf
qt

þ
1

2

qf
qr̄

� �2
þ
1

r̄2
qf
qy

� �2
þ

qf
qz̄

� �2( )
þ

1

c11
z̄ þ p ¼ �

d2z0

dt2
z̄; (8)

m1
d2z0

dt2
þ z

dz0

dt
þ k̄z0 ¼ f l þ f ðtÞ þ

pm2h̄
c11

; (9)

d2f

dt2
þ g

df

dt
þ O2f ¼ OwðtÞ; (10)

where

f l ¼ �m2

Z 2p

0

Z 1

0

r̄pðr̄; y; z̄; tÞjz̄¼�h̄ dr̄dy (11)

and wðtÞ is a zero-mean stationary Gaussian white noise process with variance s2w and constant
power spectral density intensity S0:
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The boundary conditions at the tank walls and bottom are

qf
qr̄

				
r̄¼1

¼ 0 and
qf
qz̄

				
z̄¼�h̄

¼ 0: (12a,b)

The kinematic boundary condition requires that the velocity of the liquid surface in
the vertical direction is equal to the vertical velocity of the fluid particle on the liquid
surface [9,27],

qZ̄
qt

¼
qf
qz̄

�
qf
qr̄

qZ̄
qr̄

�
1

r̄2
qf
qy

qZ̄
qy

ðat z̄ ¼ Z̄Þ: (13)

Since the pressure p ¼ 0 at the free surface z̄ ¼ Z̄; the dynamic boundary condition is

qf
qt

þ
1

2

qf
qr̄

� �2
þ
1

r̄2
qf
qy

� �2
þ

qf
qz̄

� �2( )
þ

1

c11
z̄ ¼ �

d2z0

dt2
z̄ at z̄ ¼ Z̄: (14)

Eq. (7) together with the boundary conditions (12)–(14) describe the fluid field equations, which
are coupled with the structure equation of motion (9) and its filter equation (10).

2.2. Modal equations

The solution of Laplace’s equation (7) that satisfies the boundary conditions (12) may be
written in the form

fðr̄; y; z̄; tÞ ¼ acðtÞ þ
X1
m¼0

X1
n¼1

famnðtÞ cosmyþ bmnðtÞ sinmygJmðxmnr̄Þ
coshfxmnðz̄ þ h̄Þg

coshðxmnh̄Þ
: (15)

The free surface elevation may also be written in the form

Z̄ðr̄; y; tÞ ¼
X1
m¼0

X1
n¼1

fcmnðtÞ cosmyþ dmnðtÞ sinmygJmðxmnr̄Þ; (16)

where ac; amn; bmn; cmn and dmn are the generalized coordinates. The term acðtÞ; in Eq. (15), is
very important because it is associated with the fluid force, which will be determined in the
nonlinear analysis in the next section. Since the position of the liquid surface at rest is taken at the
origin (i.e., at z̄ ¼ 0), the constant term may not be necessary in Eq. (16).
In the present analysis we consider the interaction of the three sloshing modes (0, 1), (1, 1) and

(2, 1) with the structure dynamics. Mode (1, 1) is the first anti-symmetric sloshing and has two
different modal amplitudes c11 and d11 whose nodal diameters are perpendicular to each other. In
the nonlinear analysis, these modes are coupled.
Introducing a small parameter �; and defining the following orders of the amplitudes and the

damping coefficient z:

a11; b11; c11; d11; z0; z 
 Oð�1=3Þ; (17a)

ac; a01; c01; a21; b21; c21; d21 
 Oð�2=3Þ; (17b)

a31; b31; c31; d31 
 Oð�3=3Þ: (17c)
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The orders of all other amplitudes, which are not shown in relations (17), are assumed to be
smaller thanOð�Þ: The procedure begins by considering Z̄ to be small, and expanding Eqs. (13) and
(14) about Z̄ ¼ 0 after substituting Eqs. (15) and (16). By expanding the result into a
Fourier–Bessel series in terms of J0ðx01r̄Þ; Jmðxm1r̄Þ cosmy and Jmðxm1r̄Þ sinmy ðm ¼ 1; 2Þ; and
equating the constant terms and the coefficients of J0ðx01r̄Þ; Jmðxm1r̄Þ cosmy and Jmðxm1r̄Þ sinmy on
the both sides of these equations, gives the modal equations as follows:
The equation of motion of the structure is

Q1 €z0 þ z_z0 þ k̄z0 þ Q2 _ac þ G1ða11; b11Þ ¼ f ðtÞ: (18a)

Sloshing modal equations of the first anti-symmetric mode are

_a11 þ
1

c11
þ €z0

� �
c11 þ G2ð _ai1; _bj1; ai1; bj1; ci1; dj1Þ ¼ 0; (18b)

_b11 þ
1

c11
þ €z0

� �
d11 þ G3ð _ai1; _bj1; ai1; bj1; ci1; dj1Þ ¼ 0; (18c)

_c11 � c11a11 þ G4ðai1; bj1; ci1; dj1Þ ¼ 0; (18d)

_d11 � c11b11 þ G5ðai1; bj1; ci1; dj1Þ ¼ 0; (18e)

_ac þ G6ð _a11; _b11; _z0; a11; b11; c11; d11Þ ¼ 0: (18f)

Sloshing modal equations of the first symmetric mode are

_a01 þ
1

c11
þ €z0

� �
c01 þ G7ð _a11; _b11; a11; b11; c11; d11Þ ¼ 0; (18g)

_c01 � c01a01 þ G8ða11; b11; c11; d11Þ ¼ 0; (18h)

Sloshing modal equations of the second anti-symmetric mode are

_a21 þ
1

c11
þ €z0

� �
c21 þ G9ð _a11; _b11; a11; b11; c11; d11Þ ¼ 0; (18i)

_b21 þ
1

c11
þ €z0

� �
d21 þ G10ð _a11; _b11; a11; b11; c11; d11Þ ¼ 0; (18j)

_c21 � c21a21 þ G11ða11; b11; c11; d11Þ ¼ 0; (18k)

_d21 � c21b21 þ G12ða11; b11; c11; d11Þ ¼ 0: (18l)

where a dot denotes differentiation with respect to the nondimensional time parameter t; cm1 ¼

xm1 tanhðxm1h̄Þðm ¼ 0; 1; 2Þ; Q1 ¼ m1 þ pm2h̄; and Q2 ¼ �pm2: Gkðk ¼ 1; 2; . . . ; 12Þ represent the
nonlinear terms, which consist of variables shown in their parentheses (see Appendix B). Eq. (18a)
is obtained from the structure equation of motion (9). Eliminating ac from Eqs. (18a) and (18f),
gives

Q1 €z0 þ z_z0 þ k̄z0 þ G13ð _a11; _b11; a11; b11; c11; d11Þ ¼ f ðtÞ; (19)
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where G13 is given in the appendix. Eliminating the variables a11; b11; a01; a21 and b21 from Eqs.
(18) and (19) and considering the modal ordering assumption (17), gives as follows:
The structure equation of motion is

Q1 €z0 þ z_z0 þ k̄z0 þ H1ð€z0; _c11; _d11; c11; d11Þ ¼ f ðtÞ: (20a)

Equations of motion of first anti-symmetric sloshing mode are

€c11 þ 2z11 _c11 þ ð1þ c11 €z0Þc11 þ H2ð_ci1; _dj1; ci1; dj1Þ ¼ 0; (20b)

€d11 þ 2z11 _d11 þ ð1þ c11 €z0Þd11 þ H3ð_ci1; _dj1; ci1; dj1Þ ¼ 0: (20c)

Equation of motion of first symmetric sloshing mode is

€c01 þ 2z01o01 _c01 þ o201ð1þ c11 €z0Þc01 þ H4ð€z0; _c11; _d11; c11; d11Þ ¼ 0: (20d)

Equations of motion of second anti-symmetric sloshing mode are

€c21 þ 2z21o21 _c21 þ o221ð1þ c11 €z0Þc21 þ H5ð€z0; _c11; _d11; c11; d11Þ ¼ 0; (20e)

€d21 þ 2z21o21 _d21 þ o221ð1þ c11 €z0Þd21 þ H6ð€z0; _c11; _d11; c11; d11Þ ¼ 0; (20f)

where o2mn ¼ cmn=c11; and Hl (l ¼ 1–6) represent the nonlinear terms, which are listed
in the appendix. It should be noted that viscous damping terms are added in Eqs. (20b)–(20f)
in order to account for energy dissipation. zmn is the damping ratio corresponding to
sloshing mode ðm; nÞ: Eq. (20) involve quadratic and cubic inertia nonlinear coupling
terms that give rise to the occurrence of internal resonance. From the nonlinear coupling terms
in Eq. (20), it is not difficult to show that principal internal resonance can take place if the natural
frequency of the structure ōs is close to twice the natural frequency of the first anti-symmetric
sloshing mode.

2.3. Random excitation of the uncoupled system

This section considers the mean square response of the structure with the liquid as a frozen
block. Such analysis is valuable in verifying the accuracy of Monte Carlo simulation and will be
used to normalize the response of the coupled system. In this case, we consider the equation of
motion

Q1 €z0 þ z_z0 þ k̄z0 ¼ f ðtÞ; (21)

where f ðtÞ is defined by Eq. (10). The autocorrelation function Rz0ðt
0Þ of z0ðtÞ is

Rz0ðt
0Þ ¼

Z 1

�1

jHðjoÞj2SwðoÞejot
0

do; (22)

where HðjoÞ is the frequency response function of z0ðtÞ to wðtÞ in a complex form, which can be
obtained from the transfer function

HðsÞ ¼
O

s2 þ gs þ O2
�

1

Q1s
2 þ zs þ k̄

: (23)
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SwðoÞ ¼ S0ð¼ constantÞ is the power spectral density of the white noise. Substituting t0 ¼ 0 into
Eq. (22), gives the mean square response E½z20�

E½z20� ¼ Rz0ð0Þ ¼ S0

Z 1

�1

jHðjoÞj2 do

¼
pS0fðzþ gQ1ÞðQ1O

2 þ zgþ k̄Þ � Q1ðgk̄ þ zO2Þg

k̄fðzþ gQ1ÞðQ1O
2 þ zgþ k̄Þðgk þ zO2Þ � k̄O2ðzþ gQ1Þ

2
� Q1ðgk̄ þ zO2Þ2g

: ð24Þ

This solution is mainly used for verifying the Monte Carlo simulation. The white noise wðtÞ is
generated from a random number series with zero mean value and variance s2w ¼ 2pS0=Dt by
using a FORTRAN subroutine based on the Box and Muller method [28]. In the simulation, the
power spectral density SwðoÞ is defined by

SwðoÞ ¼
S0 ð�oNpopoNÞ;

0 ð�1ooo� oN ;oNooo1Þ;

(

where oN is the Nyquist frequency, which is given by oN ¼ 2p=ð2DtÞ ¼ p=Dt; with Dt ¼ 0:25:
Fig. 2 shows time history records of the Gaussian white nose wðtÞ; the narrow-band random force
f ðtÞ and the displacement z0ðtÞ of the structure using the Runge–Kutta–Gill method. Fig. 2 is
obtained for fluid depth ratio h̄ ¼ 1:2; structure mass ratio m1 ¼ 0:87; liquid mass ratio m2 ¼ 0:034;
structure stiffness parameter k̄ ¼ 4:0; structure damping parameter z ¼ 0:03; excitation spectral
density S0 ¼ 2:0� 10�7; filter bandwidth g ¼ 0:1 and filter center frequency ratio O ¼ 2:0: The
mean square response of the structure was estimated using Monte Carlo simulations using 100
different sets of random number series. The analytical and numerical estimates of E½z20� were
found in good agreement.
3. Numerical results

3.1. Random excitation of the coupled system

The nonlinear modal interaction of the liquid free surface motion and structure dynamics is
considered using Monte Carlo simulation. The numerical simulation of Eq. (20) is carried out
when the natural frequency os of the structure system is close to twice the natural frequency of the
sloshing mode (1,1), i.e., osð�

ffiffiffiffiffiffiffiffiffiffiffi
k=M

p
Þ 
 2o11: Fig. 3 shows a sample of time history records for

wðtÞ; f ðtÞ; z0; Z̄; c11; d11 and b; for the same values of parameters used in Fig. 2, and damping
ratios z01 ¼ z11 ¼ z21 ¼ 0:01: The liquid elevation Z̄ðr̄; yÞ is estimated with reference to the position
ðr̄; yÞ ¼ ð1; 0Þ: The initial values in integrating Eq. (20) are all 0.01. The displacement z0 exhibits a
narrow-band random process, while the time histories of c11 and d11 reflect irregular rotational
motion of the nodal diameter. The rotation of the nodal diameter is measured by the angle b as
defined in Fig. 4. This angle is estimated by considering the (1,1) sloshing mode and expressing the
liquid elevation as follows:

Z̄ðr̄; yÞ ¼ ðc11 cos yþ d11 sin yÞJ1ðx11r̄Þ ¼ A cosðy� bÞJ1ðx11r̄Þ; (25)
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where A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c211 þ d211

q
and b ¼ tan�1ðd11=c11Þ: The numerical simulation reveals that the angle b

is irregular as shown by the discretized points in Fig. 3.
Figs. 5(a)–(c) show three sets of time history records whose time axes are enlarged for the same

parameters of Fig. 3. Each figure also includes the corresponding trajectories on the (c11; d11)-
plane for three time intervals (a) 1375ptp1500; (b) 4500ptp4625 and (c) 5000ptp5125;
respectively. It is seen that b is close to þ135� or �45� in Fig. 5(a). This means that the nodal
diameter maintains its orientation and does not rotate. On the other hand, Figs. 5(b) and (c)
reveal that b continuously varies with time. This means that the nodal diameter rotates
counterclockwise then clockwise then counterclockwise and so on in an irregular manner.
Fig. 6 shows the response curves for the mean square response, E½z20�; of the structure and the

liquid mean square responses, E½c211� and E½d211�; of the sloshing mode (1,1). The symbols � and �

represent the numerical results, which are calculated by Monte Carlo simulations using 100
different sets of random number series, while the dash–dotted curve represents the theoretical
result obtained from Eq. (24). In Fig. 6 and subsequent figures, the statistics are estimated from
100 different sets of time histories for duration of t ¼ 1000 to 6000 of the time histories in order to
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Fig. 3. Time histories in the coupled system when h̄ ¼ 1:2; m1 ¼ 0:87; m2 ¼ 0:034; k̄ ¼ 4:0; z ¼ 0:03; z01 ¼ z11 ¼ z21 ¼
0:01; S0 ¼ 2:0� 10�7; g ¼ 0:1; O ¼ 2:0 and (r̄; yÞ ¼ ð1; 0Þ:
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Fig. 4. The definition of the angular position b of the nodal diameter.
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Fig. 5. Time histories magnified at each time interval in Fig. 3 and its trajectory on the (c11; d11)-plane. (a)
1375ptp1500: (b) 4500ptp4625: (c) 5000ptp5125:
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eliminate the transient responses. Figs. 6(a)–(c) show the dependence of the mean square
responses on the center frequency O of a narrow-band random excitation for three different values
of bandwidth g ¼ 0:1; 0:2 and 0.3, respectively, and for the same parameters of Fig. 3. Comparing
these results with those of the uncoupled system reveals that the mean square response, E½z20�; in
the coupled system drops over a finite range of O; where the liquid free surface motion interacts
with the structure through nonlinear coupling. As the filter bandwidth, g; increases, the peak of
E½z20�; shown by solid dots �; decreases, associated with a shrinking in the range of O; over which
the interaction with liquid motion takes place.
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Fig. 7 shows the dependence of the normalized mean square of the structure E½z20�c=E½z20�f on
the center frequency for various values of bandwidth g; where the subscript ‘‘c’’ denotes coupling,
and ‘‘f’’ denotes frozen. This normalized representation provides direct information regarding the
degree of nonlinear coupling and the energy transfer between the structure and liquid surface
motions. It can be seen that the amount of the energy transfer from the structure motion to the
liquid surface motion becomes predominant as g decreases.
Fig. 8 shows the plots of the probability density function (pdf) of the structure displacement z0

and liquid elevation Z̄ for (a) O ¼ 1:9; (b) O ¼ 1:95 and (c) O ¼ 2:0 according to Fig. 6(a). The
dotted pdf plots represent the estimated results from simulation, and the solid curves represent the
Gaussian pdf calculated from the mean and mean square values of z0 and Z̄: The distribution pðz0Þ

is almost Gaussian, while pðZ̄) is deviated from normality. Since the liquid elevation Z̄ exhibits
zero-amplitude intervals in the time domain, pðZ̄) deviates from a Gaussian distribution when the
center frequency is closer to the stability boundaries as will be demonstrated in Fig. 14. It should
be noted that the response pdf curves of both structure and free surface height shown by solid
curves exhibit asymmetry for O ¼ 2:0:
Fig. 9 shows the probability density functions pðAmp½z0�Þ and pðAmp½c11�Þ of the amplitudes of

z0 and c11 for (a) O ¼ 1:9; (b) O ¼ 1:95 and (c) O ¼ 2:0 in Fig. 6(a). These amplitudes are
calculated using the following expressions:

Amp½z0� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20 þ _z20

q
and Amp½c11� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c211 þ

_c11
O=2

� �2s
: (26)

The solid curves represent Rayleigh’s distribution. It is obvious that the distribution pðAmp½z0�Þ
coincides with a Rayleigh distribution, since z0 exhibits a Gaussian process. pðAmp½c11�Þ; however,
deviates greatly from the Rayleigh distribution, especially for O ¼ 1:9; because its time history
involves a lot of time intervals of zero amplitude.
Fig. 10 shows the dependence of the mean square response of the liquid amplitudes c11 and d11

on the excitation spectral density S0: This figure is magnified in Fig. 11 and both figures reveal
that the mean square value of the liquid elevation gradually increases as the intensity S0 increases,
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Fig. 7. Ratio of E½z20�c in a coupled system to E½z20�f in an uncoupled system for various values of bandwidth g when
h̄ ¼ 1:2; m1 ¼ 0:87; m2 ¼ 0:034; k̄ ¼ 4:0; z ¼ 0:03; z01 ¼ z11 ¼ z21 ¼ 0:01 and g ¼ 0:1:
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and that E½c211� is nearly equal to E½d211�: The stability boundary of liquid sloshing is defined in this
analysis by taking the value of the mean square level Ams ¼ 2:0� 10�4 that corresponds to
S0 
 0:15� 10�7: This threshold mean square level refers either to mode c11 or mode d11:
Fig. 12 shows the averaged time lengths of different regimes of liquid motion taken from 100

time history records for the same values of parameters as those in Fig. 10. These time history
records reflect the way in which the energy is redistributed among the fluid and structure modes
due to the presence of internal resonance and excitation level in addition to the physical properties
of the system. The value Ams ¼ 2:0� 10�4 was defined in Fig. 11. This value corresponds to the
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value A0 ¼ 0:02 of the amplitude of c11 or d11; since the relation A0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2Ams

p
is satisfied. The time

length Thigh of high liquid level is defined when the amplitudes of c11 or d11 exceed the value A0:
From Figs. 11 and 12, four kinds of regions are identified depending on S0 as reported in Ref. [29].
Region I corresponding to S0p0:15� 10�7 (zero liquid motion), where the liquid free surface is
stable. Region II corresponding to 0:15� 10�7pS0p0:3� 10�7 (uncertain zero motion, or on-off
intermittency), where the mean square values of c11 and d11 are very small, that is, Thigh is close to
zero, but the liquid sloshing occurs intermittently. In region II, Thigh is less than 50% of whole
time interval as shown in Fig. 12. Region III, 0:3� 10�7pS0p1:0� 10�7; corresponds to
partially developed motion, i.e., large amplitude of sloshing occurs over a finite time interval and
then decays for next time interval. Region IV, S0X1:0� 10

�7; corresponding to fully developed
motion and is characterized by continuous random liquid motion. In region IV the time length of
high liquid level is more than 90% as shown in Fig. 12.
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Fig. 13 shows time history records for different excitation levels: (a) S0 ¼ 0:25� 10�7; (b)
S0 ¼ 0:5� 10�7; (c) S0 ¼ 1:5� 10�7 and (d) S0 ¼ 3:5� 10�7: Figs. 13(a)–(d) correspond to
regions II, III, IV, and IV, respectively. It is seen that the angular position b remains constant in
region II of Fig. 13(a) and region III of Fig. 13(b). In region IV shown in Figs. 13(c) and (d),
however, b changes during a part of time interval, and then b violently changes as S0 increases
much more as seen in Fig. 13(d).
Fig. 14 shows the stability boundaries in the parameter space ðO;S0Þ for g ¼ 0:1; 0.2 and 0.3,

based on the definition of Fig. 12, i.e., the boundary between regions I and II. The values of the
system parameters are the same as those in Fig. 3 except those values of O and S0: The symbols �;
’ andm stand for the unstable case where the liquid sloshing occurs, while �; n and& represent
the stable case where the liquid motion does not occur. It is seen that the unstable region becomes
wider as g decreases or as S0 increases.
Fig. 15 shows the correlation coefficient between c11 and d11 calculated by the expression

r½c11; d11� ¼
P

iðc11i � E½c11�Þðd11i � E½d11�ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðc11i � E½c11�Þ

2P
iðd11i � E½d11�Þ

2
q : (27)

The function r½c11; d11� gives the correlation between c11 and d11: The shape of the time history of
c11 is very similar to that of d11 when S0 is small as shown in Figs. 13(a) and (b). For small S0;
both c11 and d11 are only excited independently and the intensity of interaction between them is
very weak. In contrast, r½c11; d11� is small when S0 is comparatively large. In this case, the shape of
time history of c11 becomes different from that of d11; as shown in Figs. 3 and 13(d). This implies
that the energy can be exchanged between c11 and d11; due to the nonlinear coupling of the two
modes.
Figs. 16(a) and (b) show the mean square responses when the liquid level is lower than that of

Fig. 6(a). The values of parameters which differ from those in Fig. 6(a) are h̄ ¼ 0:55; m1 ¼ 0:94 and
m2 ¼ 0:035 in Fig. 16(a), while they are h̄ ¼ 0:40; m1 ¼ 0:96 and m2 ¼ 0:032 in Fig. 16(b). As the



ARTICLE IN PRESS

Fig. 13. Time histories showing the effects of excitation intensity for (a) S0 ¼ 0:25� 10�7 (in region II), (b) S0 ¼

0:5� 10�7 (in region III), (c) S0 ¼ 1:5� 10�7 (in region IV) and (d) S0 ¼ 3:5� 10�7 (in region IV).
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value of h̄ decreases, the range of O; where coupled vibrations occur shrinks and the mean
square values E½c211� and E½d211� of liquid elevation decrease. In addition, as h̄ decreases, the
peak of the response E½z20� moves toward the left-hand side. This seems to come from the
system characteristics associated with the frequency response curve in the case of a harmonic
excitation [17].
Figs. 17(a) and (b) show the mean square responses for two different values of the spring

constant k̄ ¼ 3:80 and 3.67, respectively. By introducing the detuning parameter s11 ¼ ōs � 2ō11;
Fig. 17(a) is obtained for s11 ¼ �0:0489; (ōs ¼ 1:9511; ō11 ¼ 1:0), while Fig. 17(b) is for s11 ¼
�0:0825 (ōs ¼ 1:9175 and ō11 ¼ 1:0). It is found that the peaks of the mean square responses
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E½c211� and E½d211� of liquid elevation in Figs. 17(a) are larger than those in Fig. 6(a), and that they
become smaller than those in Fig. 6(a) as the absolute value of s11 increases. In addition, as k̄

decreases, the peak of the response E½z20�moves toward the left-hand side, like as shown in Fig. 16.

3.2. Uni-modal sloshing

The results of Section 3.1 considered the interaction with three sloshing modes (1,1), (0,1) and
(2,1). It is useful to consider the simpler case of a single sloshing mode interacting with the
structure in order to evaluate the structure’s statistics. We set d11 ¼ c01 ¼ d01 ¼ c21 ¼ d21 ¼ 0 in
Eqs. (20). In this case, the structure displacement z0 and the amplitude c11 are coupled. Fig. 18
shows the mean square responses of E½z20� and E½c211�: It should be noted that the scale of the
ordinate E½c211� in Fig. 18 is twice as large as that in Fig. 6(a), albeit the magnitude of E½z20� is
almost the same as that in Fig. 6(a), while the magnitude of E½c211� in Fig. 18 is just twice the
magnitude of that in Fig. 6(a). This may be attributed to the fact that the orthogonal mode is not
coupled with the mode c11: Thus, it is found that one can obtain the adequate results from the
statistics of the structure response.
4. Conclusions

The random excitation of an elastic structure carrying a cylindrical liquid tank has been studied
numerically in the neighborhood of 2:1 internal resonance. The analytical model was developed to



ARTICLE IN PRESS

Simulation
Simulation

E z[ ]0
2 E c[ ]11

2

0

6.0

3.0

2.22.12.01.91.8
Center frequency �

2.22.12.01.91.8
Center frequency �

E
[z

2 11
]

0

1.2

0.6

E
[c

2 11
]

×10-1

×10-4

Fig. 18. Mean square responses for the uni-modal sloshing when the values of parameters are the same as in Fig. 6(a).

E c[ ]11
2

E d[ ]11
2

Simulation Simulation

SimulationSimulation

E z[ ]0
2

E c[ ]11
2

E d[ ]11
2

E z[ ]0
2

2.22.12.01.91.8
0

6.0

3.0

0

6.0

3.0

E
z[

]
02

0

6.0

3.0

E
z[

]
02

0

6.0

3.0

E
c

E
d

[
],

[
]

112
112

E
c

E
d

[
],

[
]

112
112

Center frequency �
2.22.12.01.91.8

Center frequency �

2.22.12.01.91.8
Center frequency �

2.22.12.01.91.8
Center frequency � (b)(a)

×10-4 ×10-4

×10-2×10-2

Fig. 17. Mean square responses as in Fig. 6(a) but for different values of k̄: (a) k̄ ¼ 3:80: (b) k̄ ¼ 3:67:

T. Ikeda, R.A. Ibrahim / Journal of Sound and Vibration 284 (2005) 75–10296
include three sloshing modes. It is found that over a narrow band of the excitation center
frequency the liquid motion acts as a nonlinear vibration absorber of the structure response. The
rotational (swirl) motion of liquid surface was found to occur more violently as the excitation
intensity increases. The structure displacement response displayed a Gaussian process, while the
liquid motion pdf deviated from a Gaussian distribution. The time history records generated for
different excitation levels revealed four regimes of liquid surface motion: zero motion, uncertain
motion, partially developed motion and fully developed motion. The unstable region, where the
liquid sloshing occurs, becomes wider as the excitation intensity increases or when its bandwidth is
reduced. A uni-modal sloshing modeling proved to be adequate to study the structure dynamic
interaction with the liquid.



ARTICLE IN PRESS

T. Ikeda, R.A. Ibrahim / Journal of Sound and Vibration 284 (2005) 75–102 97
Acknowledgements

This paper was partially supported by grant-in-aid for Scientific Research from the Japanese
Ministry of Education, Culture, Sports, Science and Technology. The first author would like to
express his appreciation for their generous support.
Appendix A

Applying Newton’s second law to a fluid particle in a nonviscous fluid, we can obtain the
equations of motion in the moving coordinate system O–xyz or O–ryz (see Fig. 1) as follows:

r
dv

dt
¼ �gradP þ rg; (A.1)

where v is the velocity vector of the fluid particle which exists at the spatial position ðx; y; zÞ at time
t, and g is the vector of gravitational acceleration. By noting the fact that

dv

dt
¼

qv
qt

þ ðv � gradÞv (A.2)

and taking into account rot v ¼ 0 for an irrotational fluid, and using the equation

1

2
grad q2 ¼ v� rot vþ ðv � gradÞv ¼ ðv � gradÞv; (A.3)

Eq. (A.1) may be rewritten

qv
qt

þ
1

2
grad q2 ¼ �

gradP

r
þ g; (A.4)

where q ¼ jvj: It should be noted that the velocity potential ~F can exist under the assumption of
irrotational flow. Therefore the fluid velocity can be expressed by using ~F as follows:

v ¼ grad ~Fð� r ~FÞ: (A.5)

Substituting Eq. (A.5) into Eq. (A.4), we obtain

grad
q ~F
qt

� �
þ
1

2
grad q2 ¼ �

gradP

r
þ gradð�gzÞ: (A.6)

Therefore Eq. (A.6) may be rewritten

grad
q ~F
qt

þ
1

2
q2 þ

P

r
þ gz

� �
¼ 0: (A.7)

Integrating Eq. (A.7), we obtain

q ~F
qt

þ
1

2
q2 þ

P

r
þ gz ¼ c1ðtÞ: (A.8)

It is convenient to write the velocity potential ~F as the sum of the part corresponding
to the tank motion, F0; and the part corresponding to the fluid motion relative to the
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tank, F; i.e.,

~F ¼ F0 þ F: (A.9)

The velocity of the tank v0 can be expressed by using F0 and unit vectors er; ey and ez in the
cylindrical coordinate system as

v0 ¼ gradF0 ¼
qF0
qr

er þ
1

r

qF0
qy

ey þ
qF0
qz

ez: (A.10)

The velocity v0; i.e., the relative velocity of the origin O in the coordinate system O–xyz with
respect to the fixed coordinate system O0–XYZ; can be also expressed by

v0 ¼ _Z0ez; (A.11)

where _Z0 is the tank velocity since the tank is excited only in the vertical direction. Eqs. (A.10) and
(A.11) lead to

qF0
qr

¼ 0;
1

r

qF0
qy

¼ 0;
qF0
qz

¼ _Z0: (A.12)

Integrating Eq. (A.12), we obtain

F0 ¼ _Z0z þ c2ðtÞ: (A.13)

Partial differentiation of Eq. (A.13) with respect of t yields

qF0
qt

¼ €Z0z þ _c2ðtÞ: (A.14)

Substituting Eqs. (A.9) and (A.15) into Eq. (A.8), we obtain

qF
qt

þ €Z0z þ _c2ðtÞ þ
1

2
q2 þ

P

r
þ gz ¼ c1ðtÞ: (A.15)

If the velocity potential F is replaced by Fþ
R
fc1ðtÞ � _c2ðtÞgdt in Eq. (A.15),

qF
qt

þ
1

2
q2 þ

P

r
þ gz ¼ � €Z0z: (A.16)

Using the velocity potential F instead of the velocity q, Eq. (A.16) may be rewritten as

qF
qt

þ
1

2

qF
qr

� �2
þ
1

r2
qF
qy

� �2
þ

qf
qz

� �2( )
þ

P

r
þ gz ¼ � €Z0z: (A.17)
Appendix B

The nonlinear terms Gi ði ¼ 1; 2; . . . ; 13Þ in Eqs. (18) and (19) are expressed by

G1 ¼ Q3ða
2
11 þ b211Þ;
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G2 ¼ Q4 _a01c11 þ Q5 _a11c01 þ Q6 _a11c21 þ Q7 _a21c11 þ Q8
_b11d21 þ Q9

_b21d11

þ Q10ð3 _a11c
2
11 þ _a11d

2
11 þ 2

_b11c11d11Þ þ Q11a01a11

þ Q12ða11a21 þ b11b21Þ þ Q13a
2
11c11 þ Q14b

2
11c11 þ Q15a11b11d11;

G3 ¼ Q16 _a01d11 þ Q17
_b11c01 þ Q18 _a11d21 þ Q19 _a21d11 þ Q20

_b11c21 þ Q21
_b21c11

þ Q22ð2 _a11c11d11 þ _b11c
2
11 þ 3

_b11d
2
11Þ þ Q23a01b11

þ Q24ða11b21 � a21b11Þ þ Q25a11b11c11 þ Q26a
2
11d11 þ Q27b

2
11d11;

G4 ¼ Q28a01c11 þ Q29a11c01 þ Q30ða11c21 þ b11d21Þ þ Q31ða21c11 þ b21d11Þ þ Q32a11c
2
11

þ Q33b11c11d11 þ Q34a11d
2
11;

G5 ¼ Q35a01d11 þ Q36b11c01 þ Q37ða11d21 � b11c21Þ þ Q38ða21d11 � b21c11Þ þ Q39b11c
2
11

þ Q40a11c11d11 þ Q41b11d
2
11;

G6 ¼ Q42ð _a11c11 þ _b11d11Þ þ Q43ða
2
11 þ b211Þ; G7 ¼ Q44ð _a11c11 þ _b11d11Þ þ Q45ða

2
11 þ b211Þ;

G8 ¼ Q46ða11c11 þ b11d11Þ; G9 ¼ Q47ð _a11c11 � _b11d11Þ þ Q48ða
2
11 � b211Þ;

G10 ¼ Q47ð _a11d11 þ _b11c11Þ þ Q48a11b11; G11 ¼ Q49ða11c11 � b11d11Þ;

G12 ¼ Q49ða11d11 þ b11c11Þ; G13 ¼ Q50ð _a11c11 þ _b11d11Þ þ Q51ða
2
11 þ b211Þ; ðB:1Þ

where the coefficients Qi ði ¼ 1; 2; . . . ; 51Þ are given by

Q1 ¼ m1 þ pm2h̄; Q2 ¼ �pm2; Q3 ¼ �
pm2a

2cosh2ðx11h̄Þ
; Q4 ¼ c01K

120
1 ;

Q5 ¼ c11K
120
1 ; Q6 ¼

1
2
c11K

021
1 ; Q7 ¼

1
2
c21K

021
1 ; Q8 ¼ Q6; Q9 ¼ Q7;

Q10 ¼
1
8
x211K

040
1 ; Q11 ¼ g1011 þ c01c11K

120
1 ; Q12 ¼

1
2
ðg1121 þ 2k0211 þ c11c21K

021
1 Þ;

Q13 ¼
1
4
c11ð3G

1111
1 þ k0401 þ 3x211K

040
1 Þ; Q14 ¼

1
4
c11ðG

1111
1 þ 3k0401 þ x211K

040
1 Þ;

Q15 ¼
1
2
c11ðG

1111
1 � k0401 þ x211K

040
1 Þ; Q16 ¼ Q4; Q17 ¼ Q5; Q18 ¼ Q6; Q19 ¼ �Q7;

Q20 ¼ �Q8; Q21 ¼ Q9; Q22 ¼ Q10; Q23 ¼ Q11; Q24 ¼ Q12; Q25 ¼ Q15;

Q26 ¼ Q14; Q27 ¼ Q13; Q28 ¼ g1011 � x201K
120
1 ; Q29 ¼ g1011 � x211K

120
1 ;

Q30 ¼
1
2
ðg1121 þ 2k0211 � x211K

021
1 Þ; Q31 ¼

1
2
ðg1121 þ 2k0211 � x221K

021
1 Þ;

Q32 ¼
1
8
c11ð6G

1111
1 þ 2k0401 � 3x211K

040
1 Þ; Q33 ¼

1
4
c11ð2G

1111
1 þ 2k0401 � x211K

040
1 Þ;
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Q34 ¼
1
8
c11ð2G

1111
1 � 2k0401 � x211K

040
1 Þ; Q35 ¼ Q28; Q36 ¼ Q29; Q37 ¼ Q30;

Q38 ¼ �Q31; Q39 ¼ Q34; Q40 ¼ Q33; Q41 ¼ Q32; Q42 ¼ c11G11;

Q43 ¼
1
2
ðaþ g11 þ c211G11Þ; Q44 ¼

1
2
c11K

120
0 ;

Q45 ¼
1
4
ðg0110 þ k1200 þ c211K

120
0 Þ; Q46 ¼

1
2
ðg0110 þ k1200 � x211K

120
0 Þ;

Q47 ¼
1
2
c11K

021
2 ; Q48 ¼

1
4
ðg2112 � k0212 þ c211K

021
2 Þ;

Q49 ¼
1
2
ðg2112 � k0212 � x211K

021
2 Þ; Q50 ¼ �Q2Q42; Q51 ¼ Q3 � Q2Q43: (B.2)

The symbols in Eq. (B.2) are as follows:

Gm1 ¼

Z 1

0

r̄J2mðxm1r̄Þdr̄; gm1 ¼

Z 1

0

1

r̄
J2mðxm1r̄Þdr̄;

Kijk
m ¼

Z 1

0

r̄Ji
0ðx01r̄ÞJ

j
1ðx11r̄ÞJ

k
2ðx21r̄Þdr̄=Gm1;

a ¼

Z 1

0

r̄
dJ1ðx11r̄Þ
dr̄

� �2
dr̄ ¼

1

4
x211

Z 1

0

r̄fJ0ðx11r̄Þ � J2ðx11r̄Þgdr̄;

kijk
m ¼

Z 1

0

1

r̄
Ji
0ðx01r̄ÞJ

j
1ðx11r̄ÞJ

k
2ðx21r̄Þdr̄=Gm1;

Gijkl
m ¼

Z 1

0

r̄Jiðxi1r̄ÞJjðxj1r̄Þ
d

dr̄
½Jkðxk1r̄Þ�

d

dr̄
½Jlðxl1r̄Þ�dr̄=Gm1;

gijk
m ¼

Z 1

0

r̄Jiðxi1r̄Þ
d

dr̄
½Jjðxj1r̄Þ�

d

dr̄
½Jkðxk1r̄Þ�dr̄=Gm1;

cmn ¼ xmn tanhðxmnh̄Þ: (B.3)

The nonlinear terms Hl ðl ¼ 1; 2; . . . ; 6Þ in Eq. (20) are given by

H1 ¼ S1ð1þ c11 €z0Þðc
2
11 þ d211Þ þ S2ð_c

2
11 þ

_d
2

11Þ;

H2 ¼ S3 _c01 _c11 þ S4ð_c11 _c21 þ _d11 _d21Þ þ S5c11 _c
2
11 þ S6c11 _d

2

11 þ S7 _c11 _d11d11

þ S8c01c11 þ S9c11c21 þ S10d11d21 þ S11c
3
11 þ S12c11d

2
11;



ARTICLE IN PRESS

T. Ikeda, R.A. Ibrahim / Journal of Sound and Vibration 284 (2005) 75–102 101
H3 ¼ S13 _c01 _d11 þ S14ð_c11 _d21 � _c21 _d11Þ þ S15 _c
2
11d11 þ S16 _d

2

11d11 þ S17c11 _c11 _d11

þ S18c01d11 þ S19c11d21 þ S20c21d11 þ S21d
3
11 þ S22c

2
11d11;

H4 ¼ S23ð1þ c11 €z0Þðc
2
11 þ d211Þ þ S24ð_c

2
11 þ

_d
2

11Þ;

H5 ¼ S25ð1þ c11 €z0Þðc
2
11 � d211Þ þ S26ð_c

2
11 �

_d
2

11Þ;

H6 ¼ S27ð1þ c11 €z0Þc11d11 þ S28 _c11 _d11; (B.4)

where Si ði ¼ 1; 2; . . . ; 28Þ are constants determined by the system parameters.
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